AD-A138 121 ANALYZING PROGRAM METHODOLOGIES USING SOF TWARE SCIENCE 174
{U) OHIO STATE UNIV RESEARCH FOUNDATION COLUMBUS
S H ZWEBEN JAN B4 ARO- 17150 4-EL DAAG29-80-K- 0081

UNCLASSIFIED G 9/2




_ T By Oy PRI et e -

m
m
m
m
14

1.25

MICROCOPY RESOLUTION TEST CHART
MATIONAL BUREAU OF STANDARDS-1963-A

I
i
I

B SE e ie s DEan 1 .
R S R A 1553 9ads F g, i

—

P
- —— "’L -




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

i
‘. : | REPORT DOCUMENTATION PAGE BER D R O RN
N TTREPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
3 17150.4~EL N/A N/A
! . TITLE (and Subtitfe) 8. TYPE OF REPORT & PERIOD COVERED
f 1 Aug 80-31 Dec 83
A : Analyzing Progrem Methodologies Using Software Final Report
’ Science 6. PERFORMING ORG. REPORT NUMBER
N/A
‘. AUTHOR(s) 8. CONTRACT OR GRANY NUMBER(s)
S. H. Zweben DAAG29-30-K-0061
. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Ohio State Univ
Columbus, Chio 43212
N/A

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
U. S. Army Research Office Jan

P. 0. Box 12211

& pﬁs:aL;h_ILLangle_Ea;k?_NC__2%}90
o . MONITORING AGENCY NAME & ADDRESS(If ditfe7ent from Controlling Olfice) 18. SECURITY CLASS. (of this report)

Unclassified
15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

13. Nli"aBER OF PAGES

ADA138121

. T e eyt .
“ ! 16. DISTRIBUTION STATEMENT (of this Report) P

: Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, Il diiferent from Report)

i. 10. SUPPLEMENTARY NOTES

Tf'i | THE VIEW, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPOAT
p ARE THOSE OF THE AUTHOR(S) AND SHOULD t'OT BE CONSTRUED AB

i AN OFFICIAL DEPARTMENT OF THE ARMY POS:TIQN, POLICY, OR DE-

CISION, UNLESS 8O DESIGNATED BY OTHER DOCUMENTATION.

19. KEY WORDS (Continue on reveree side If neceseasy and Identily by dblock number)

Computer Programs
Computer Programming

ABSTRACT (Conthuswe an roverse oide ¥ sy and identify by block number) | =" 4

o

() The ultimate goal of the research program is to enhance the quallity of

w computer software. In order to accomplish this goal, however, there have to

— be agreed upon notions of just what quality means and how it can be assessed.

Fares This project sought to make contributions to our understanding of these issues.
One of the specific objectives of this project was to study software science

L 3

metrics in the COBOL arena, another objective concerned the evaluation of
principles of software development.Research also sought to examine instruments

w.',z‘gm EDITION OF 1 NOV 85 13 OBSOLETR UNCLASS I FIED
4 02 17 044 T T CRRRERTIOR OF TR PR e B Bt

= i - -

A T



. nciussitiea
SECURITY CLASSIFICATION OF THIS PAGE(Wnhen Data Entered)

\ 20. ABSTRACT CONTINUED

\lstill reliable and valid means of measuring one's understanding of a piece

of software.

Accession For

NTIS GRAXI Eg
DTIC TAB
Unannounced O

Justitication . |

4 , By
. Distribution/
Availability Codes
Avail and/or
Dist Special

A/

B

e s -y

Unclas

_ SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)




- Aleo 17/504

RF Project 762340/713168
; Final Report

ANALYZING PROGRAM METHODOLOGIES
USING SOFTWARE SCIENCE

{ Stuart H. Zweben
i Department of Computer and INformation Science

i For the Period
: August 1, 1980 - December 31, 1983

U.S. ARMY RESEARCH OFFICE
P.0. Box 12211
Research Triangle Park, N.C. 27709

Contract No. DAAG29-80-K-0061

January, 1984

The Ohio State University

Research Foundation
1314 Kinnear Road
Columbus, Ohio 43212




2
i Introduction
|
_!:
! This 1is the final report of a researcn project whicih began in the summer of L,

1950 and continued through the end of 1983. This report will summarize tie

various objectives of the project, the approaches followed to accomplish these

objectives, and the major results obtained. Appended to this report is a list

of the participatiug personnel, and a list of the various scholarly activities
associated with tne project which were performed by these personnel.

! . Objectives

The ultimate goal of the research program is to enhance the quality of
computer software. In order to accomplish this goal, however, there have to
be agreed upon notions of just whet quality means and how it can be assessed.
This project sought to make contributions to our understanding of tuese

issues.

In the past decade, it has become increasingly popular to measure features of
the code itself, and to associate the resulting metrics with quality. One
technique, due to Halstead, et al., has come to be known as "software

science”. The wumetrics of software science consist of functions of the

operators and operands used in the code. Several researchers have studied
these metrics, and many have found apparent relationships between the metrics

and such behavioral characteristics as effort to write the code. One of the

specific objectives of this project was to study the software science metrics
in the COBOL arena, as the earlier work had not really been concerned with

programs written in this language.

— e an g e .

Another objective of this research concerned the evaluation of principles of
softvare development. In many software engineering articles and reports,
suthors make statements concerning the DOs and DON“Ts for obtaining good

P Iy S

softwvare, These statements, however, are often based on no scientifically
: obtained evidence. Our research therefore was interested in seeing the extent

to wnich some o: these principles could be validated in a controlled

laboratory setting.




~ m—

The implementation of experiments to test bypotheses in software engineering
is often hampered by the difficulty in measuring aspects of quality such as
understandability., The standard means for assessing understandability, the
comprehension test, is very time-consuming to create. Ue therefore sought to
examine alternative instruments which are easier to create but which are still
reliable and valid means of measuring one”s understanding of a piece of

software.

approacies

In trying to apply the area of software science to COBOL, we first of all
needed to create a software tool on which the various metrics of software
science could be conveniently obtained. The next step was to analyze COEOL
programs using the tool to see if the relationships from software science for
which evidence existed in other programming languages could be shown to apply
to COBOL. The goal here was to use a variety of programs, including those
written by students in computer science courses as well as those written for
production work by professional programmers. We were also aware of an effort
by researchers at Purdue University in which COBOL programs -were being
analyzed using the software science metrics. We therefore desired to compare

our results with those obtained by the Purdue group.

In deciding on our approach to evaluating principles of software developument,
we noted that several researchers already had begun to deal with codiag
principles. Ve therefore decided to focus our attention at the design phase
of the software lifecycle, where several principles also exist. This approach
also has the advantage of potentially allowing quality decisions to be reached
earlier in the development process, wien corrective action is typically less

expensive,

ile were interested in two types of investigations. One concerned the
evaluation of several possible quantitative metrics which could be obtained
from design documents, to see which appeared to provide the most information
about the quality of the resulting software. The second coancerned the

evaluation of specific design principles, such as wmodule coupling, in a
controlled experimental setting. That is, we sought to determine if software




exhibiting features of good coupling (such as lack of global variable usage)

could be shown superior to similar software wnose coupling was poorer.

In attacking our final objective, that of improving tihe means of assessing
understandability, we noted that researchers in psychology have often used a
technique called the "cloze procedure" as an alternative to (multiple choice
or snort answer) comprehension questions. The cloze procedure is one which
involves filling in missing blanks in a passage of text. The greater the
subjects” ability to £ill in the missing pieces, the greater the understanding
of the material. Since cloze materials are very easy to construct, and have
received some credibility in other domains, we decided to imvestigate this

technique in the software domain.
Results

A tool for obtaining the software science metrics from COBOL programs was
developed, tested, and enhanced during the project period. A technical report
describing the tool”s design and use was published and provided to the sponsor
as part of a previous progress report. A large number of programs, from both
student programming courses and production environments, were analyzed, A
technical report detailing this investigation is in preparation, but the major

conclusions are as follows.

The Halstead length relationship held up reasonably well for all classes of
programs, but the components of the software that were included in the
operator and operand counts strongly influenced this result, For instance, in
smaller student programs, the length estimator was best vwnen Data Division was
included in the counting strategy. For larger programs, including productiom
programs, counting or not counting Data Division didn“t seem to make much
differernce. Overall, then, it appears to be appropriate to include Data
Division in COBOL studies using software science metrics. In fact, this
suggests that declarative components of programs in other languages might have
strougly influenced earlier results in software science, and the data used it
these early studies might well deserve re-examination along these lines to see
whether the conculsions reached will change. If so, the reaction of the

eutire computer science coumunity to the software science metrics might well




————— iy —— e

B SUPEISUR

oe cdififerent.

The language level estimator of software science could not be siown to be

constant in any of our studies, Ve recoumend that it is not useful as a

metric at this time, especially when applied to an individual progran.

The Halstead effort metric seemed to work very well for small programs, but
was not very gzood for larger programs. Ve feel that the effort metric does
not appropriately capture the effort required to imtegrate program components.
Thereiore, small programs which require little integration effort are
relatively unaffected by this weakness, while larger programs cam be greatly

affected.

Other metrics, such as IicCabe’s c¢yclomatic number, Kafura”s information flow
metric, and Davis® chunk metric, were also studies in the "effort" domain.
lone of them provided coansistently good results. We feel that there are to
date no really valid metrics of software effort. The technical report
discusses some approaches which may overcome the weaknesses of the metrics

studied in this research,

The metrics obtained by our COBOL analyzer were compared with those obtained
using a COBOL analyzer developed at Purdue University. The Purdue analyzer
wvas implemented on Ohio State”s Amdahl computer and the programs analyzed by
the Ohio State COBOL analyzer were run on the Purdue analyzer. There were
significant differences obtained in many of the operator and operand counts,
due to differences in the counting strategies employed. The effects of these
differences on the validity of the Halstead metrics, however, was not
significant. That is, when one test program was compared to anmother using the
OSU analyzer, the results were similar to those obtained when the same pair of
programs were compared using the Purdue analyzer. It turned out that the same
conclusions could be reached concerning the length estimator and the language
level and effort estimators using either analyzer, for the set of programs
studied. However, the fact that the absolute values of the metrics changed
significantly cautions against reliably using the results obtained by

different analyzers in comparisons of programs, This makes it extremely
difficult to compare results obtained by different authors in the literature




—— e e e

on soitware uetrics.

Qur work in the evalustion of design methodology principles began with a study
of several designs written according to the wmethodology of Structured Design
espoused by Yourdon, et al, in a production enviromment. Several ueasurable
properties of these designs were recorded, and their relationship to errors in
developrment of the resulting system was analyzed. It turned out that the
design features most closely related to development errors were those which
had to do with the notion of coupling. The details of this study can be Iound

in Doug Troy s masters thesis.

llext, we performed several experiments to determine if the principles which
influence the 1level of coupling can be shown significant in a controlled
envirommental setting. Ue selected the feature of global variable usage for
study because designs which differ along this single dimension are very far
apart in the coupling hierarchy of Structured Design. Furthermore, materials
for a controlled experiment which differed only along this dimension could
easily be developed. The experiments tested this coupling feature against
such attributes as understandability and modifiability. Uowever, we could not
produce any main effects for coupling level in these experiments. These
results suggest that the effect of using global interface elements, rather
than paraceterized elements, is at best a second order influence on the
quality of the software despite the prominent role which it plays in the

coupling hierarchy of Structured Design.

Tovard the end of the project period, we attempted to find other aspects of
the design of software which might play a more significant role in the
softvare’s understandability. Ve tested two versions of a master file update
program, one of which was developed according to a top-down design pnilosophy,
and the other of which was developed using data abstraction design principles.
The two versions were shown to differ in their understandability. In
analyzing chese differences, it seems to us that the principle of module
conesion is playing an important role. Future research will attempt to

investigate this hypothesis more careiully.

Our iavestigations of the cloze procedure as a technique for assessing the




B

uncerstandability of software Dbrought some interestinz results. Ln
erperimenter using a cloze technique has a great deal of Ireedom. For
example, it is common to delete every nth word from prose texts. The ciioice
0oi n does not seem to make much difference (as long as a ninimun value oi,
say, at least 3 is selected), and n=5 is coumon. iowever, when applying tae
cloze procedure to the software doumain, different results were obtained wien
u=) and n=5 were used. This has a great bearing on the validity of the cloze
procedure. Ve also noted that the kinds of 'words” (things sepirated oy
blanks or punctuation) that were deleted made a significant difference in tae
performance oi the suojects. e attempted to classify the nature of these
deletions to explain tinese variations, aand were fairly successful ian this
regard. The «classification also predicted the results of our later
experiments and those of another researcher who has studied the cloze
procedure in the software domain., The forthcowing dissertation by Bill Hall

wvill describe the details of these experiments and the classification scheme.

The work involving the cloze procedure has suggested several other kinds of
experiments wiich can (and probably should) be done to determine the
generality of our results. These include varying such factors as programming
language, subject experience and problem domain. However, by far the nore
exciting outcome of this research has been its potential for wmore clearly
identifying the characteristics of software that make it difficult to
couprenend. As uore is learned about classifying the "easy" and "hard" parts
to complete in cloze tests, more useful code metrics (at least) may well
result, and we may zet closer to our objective of trying to quantify (and
thereby possibly improve) ~at 1least one important dimension of software

quality.




e

(3}

List of Personnel Who Worked on This Project
Stuart . Zweben Principal Investigator Aug. 1980 - Dec. 19G3

Douglas A. Troy Graduate Student Aug. 1980 - lar. 191
(not supported)

Joan 3. Lonse Graduate Research Assoc. Oct., 1930 = Dec. 1933
Kin Chee Fung _ Graduate Research Assoc. Jan. 1931 - Sep. 1931
Eric Biefeld Graduate Research Assoc, Jul. 1981 - Auz. 1951
Jdarayan Debunath Graduate Research Assoc. Jul. 1932 - Jun. 1933
4 William E,. iHall Graduate Research Assoc. Jul. 1932 - Dec. 1933
Julie iiiller Secretary Sep. 1980 - Dec. 1932
Christine Poynter Secretary Apr. 1961 - Jun., 1981
Sheila ilaginn Secretary Oct., 1981 - iar., 1962
Amy Cormneliussen Secretary Mar. 1962 - Jun. 1982




t
|
I
|
L
L

,,A_unup’—'

RPN

List of Scholarly Activities Associated with the Project

Publications

Mieasuring the Quality of Structured Desigans', Journal of Systems and

Sorftware, 2, 113-120 (1981); D.A. Troy and S.l. Zwveben, co-suthors.

"Evaluation of Design liethodologies, A Proposal”, AC!I SIG°"FL Soritware
Encineering idotes, 7, I, January, 1982, 60-69; ii. Arisaws G. Bergland,
£. Bowers, J. Buxton, R. Kelley, H. Kerth, S. Saib, P. Ting . Troy, and

S. Zueben, co~authors.

co

"Control Flow Complexity: Issues and Experience, Proceedings of the SHARES

Conference, iarch 1982; S. Zweben, author.

"A Software Science Analyzer for COBOL", Technical Report 83-2, Computer and
Information Science Researct Center, Ohio State University, 1983; X.C. Fung,

. Debnath, and S. Zweben, co-authors.

"Experimental Evaluation of Software Design Principles: An Investipation into
the Lifect of liodule Coupling on System llodifiability", Jourmal of Systems and

Softvare, to appear; J. Lohse and 5. Zweben, co-authors.

"A Study of the Application of Software lletrics to COBOL", Tecamical Report,
Couputer and Information Science Research Center, Ohio State University, 1984;

in preparation; i!. Debnath and S. Zweben, co-authors.

Presentations

"Software Science in Software Engineering', ACH iiiagara Froatier Chapter,
Buffalo, ilew York, :larch 1981 and ACI{ Rochester Chapter, Rochester, Hew York,

icarch 1681; S. Zwveben.,

"The Status of Software Science in 1981", CO.iPSAC3l, Chicago, Illinois,

Jdovember 1931; S, Zueben.




19

"e

Software .letrics DResearch: &An Aczdemic Perspective", Al Couputer Zcience

Couference, Indiananolis, Indiana, Fedbrucry 1902; S. Zueven.
b} 3 ) 3 7 b

"Coatrol Flou Complexity: Issues and Zxperience”, SilARE33 Conference, Los

k Angeles, California, ilarch 1932; S. Zweben.

“"Tovarc A ileasure of System Coupling', Fifth linnoubroox Yorikshop on Software,

Blue llountain Lake, ilew York, July 1932; J. Lohse ang 3. Zueben.

"Software Engineering: ‘nat Can It Do For You? ‘hat Caa You Do Fer I[t?",

ASIS32 Annual Conference, Columbus, Onio, October 1962; S. Zweben,

. "Software iletrics", Purdue University Computer Scieace Department’s 20th
Anniversary Symposium, ‘lest Lafayette, Indiana, Hovember 19562; S. Zueven.
Ko

"Software Cuality and the Halstead iletrics", ACII Greater Dayton Chapter,

Dayton, Ohio, iovember 1932; S. Zwueben.

"Principles of Software Engineering", Professional Developuent Seunirnar, The

Ohio State University Office of Continuing Education, Columous, Ohbio, Jure

e UG o MM e s

1683; S. Zweben.

"Tae Cloze Procedure and Program Complexity', Sixtn linnowbrook ‘orkshnop on

Softuvare, Blue iiountain Lake, ilew York, July 1983; W, Hdall and S. Zweben.
Theses

"Mieasuring the Quality of Structured Designs", ilasters Thesis, Departuent of
. Computer and Information Science, Ohio State University, iiarcih 193l; Douglas

A. Troy, author; S.i. Zweben, advisor.

"The Cloze Procedure and Program Complexity", Ph.D. Thesis, Department of

Computer and Information Science, Ohio State University, 1in preparation;

illiam . ilall, author; S.ll. Zuveben, advisor.

Y — -
.

A0 o7 S







